)
}
}
)
(
}
{
)
)
(
)
(
(
{
}
)
(
)
}
)
)
{
(
(
)
)
}
)
(
}

Raphaël Easing Equations How To

  1. const { pow, PI } = Math;
  2.  
  3. // mostly unedited code from Raphaël
  4. var ef = {
  5.   linear: function(n) {
  6.     return n;
  7.   },
  8.   '<': function(n) {
  9.     return pow(n, 1.7);
  10.   },
  11.   '>': function(n) {
  12.     return pow(n, 0.48);
  13.   },
  14.   '<>': function(n) {
  15.     var q = 0.48 - n / 1.04,
  16.       Q = Math.sqrt(0.1734 + q * q),
  17.       x = Q - q,
  18.       X = pow(abs(x), 1 / 3) * (x < 0 ? -1 : 1),
  19.       y = -Q - q,
  20.       Y = pow(abs(y), 1 / 3) * (y < 0 ? -1 : 1),
  21.       t = X + Y + 0.5;
  22.     return (1 - t) * 3 * t * t + t * t * t;
  23.   },
  24.   backIn: function(n) {
  25.     var s = 1.70158;
  26.     return n * n * ((s + 1) * n - s);
  27.   },
  28.   backOut: function(n) {
  29.     n = n - 1;
  30.     var s = 1.70158;
  31.     return n * n * ((s + 1) * n + s) + 1;
  32.   },
  33.   elastic: function(n) {
  34.     if (n == !!n) {
  35.       return n;
  36.     }
  37.     return pow(2, -10 * n) * Math.sin(((n - 0.075) * (2 * PI)) / 0.3) + 1;
  38.   },
  39.   bounce: function(n) {
  40.     var s = 7.5625,
  41.       p = 2.75,
  42.       l;
  43.     if (n < 1 / p) {
  44.       l = s * n * n;
  45.     } else {
  46.       if (n < 2 / p) {
  47.         n -= 1.5 / p;
  48.         l = s * n * n + 0.75;
  49.       } else {
  50.         if (n < 2.5 / p) {
  51.           n -= 2.25 / p;
  52.           l = s * n * n + 0.9375;
  53.         } else {
  54.           n -= 2.625 / p;
  55.           l = s * n * n + 0.984375;
  56.         }
  57.       }
  58.     }
  59.     return l;
  60.   }
  61. };
  62. ef.easeIn = ef['ease-in'] = ef['<'];
  63. ef.easeOut = ef['ease-out'] = ef['>'];
  64. ef.easeInOut = ef['ease-in-out'] = ef['<>'];
  65. ef['back-in'] = ef.backIn;
  66. ef['back-out'] = ef.backOut;
  67.  
  68. // create a dot
  69. function dot(x, y, radius, color) {
  70.   const el = document.createElement('div');
  71.   const size = `${radius * 2}px`;
  72.   Object.assign(el.style, {
  73.     position: 'absolute',
  74.     left: `${x}px`,
  75.     top: `${y}px`,
  76.     width: size,
  77.     height: size,
  78.     transform: `translate(${-radius}px, ${-radius}px)`,
  79.     borderRadius: '50%',
  80.     background: color
  81.   });
  82.   el.classList.add('dot');
  83.   document.body.appendChild(el);
  84.   return el;
  85. }
  86.  
  87. const elA = dot(0, 40, 30, 'red');
  88. const elB = dot(0, 110, 30, 'blue');
  89. const elC = dot(0, 160, 20, 'green');
  90.  
  91. // how to use the easing equations:
  92. let t = 0;
  93.  
  94. let start = Date.now();
  95. let time = 0;
  96. let duration = 2; // 2 seconds
  97. function loop() {
  98.   // frame based
  99.   elA.style.left = `${ef.elastic(t) * 50}%`;
  100.   t += 0.005;
  101.  
  102.   // time based
  103.   if (time <= duration) {
  104.     time = (Date.now() - start) / 1000;
  105.     const param = time / duration;
  106.     elB.style.left = `${ef.elastic(param) * 50}%`;
  107.  
  108.     // green bounce example
  109.     elC.style.left = `${ef.bounce(param) * 50}%`;
  110.   }
  111.  
  112.   requestAnimationFrame(loop);
  113. }
  114. loop();

I realized it might not be obvious how to use Raphaël’s easing equations. So I speed coded this example.

If you’d like to learn more about this kind of thing gsap is a great place to start… it is amazing… I highly recommend browsing the source.

Rotate Point Around Point (Golfed)

  1.   rot = (
  2.     cx, cy, X, Y, ang,
  3.     cos = Math.cos(-ang),
  4.     sin = Math.sin(-ang),
  5.     x = cos * (X - cx) + sin * (Y - cy) + cx,
  6.     y = cos * (Y - cy) - sin * (X - cx) + cy) => ({ x, y })

Rotate one point around another… I like to use something like this when speed-coding and golfing…

Perlin Noise on JavaScript Canvas

  1. // IMPLEMENTATION OF IMPROVED NOISE - COPYRIGHT 2002 KEN PERLIN.
  2. const p = [];
  3. const permutation = [151,160,137,91,90,15,
  4. 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
  5. 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
  6. 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
  7. 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
  8. 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
  9. 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
  10. 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
  11. 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
  12. 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
  13. 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
  14. 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
  15. 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180];
  16.  
  17. for (let i = 0; i < 256 ; i++) 
  18.   p[256+i] = p[i] = permutation[i]; 
  19.  
  20. function noise(x, y, z) {
  21.   const X = Math.floor(x) & 255,                  
  22.         Y = Math.floor(y) & 255,                  
  23.         Z = Math.floor(z) & 255;
  24.   x -= Math.floor(x);                                
  25.   y -= Math.floor(y);                               
  26.   z -= Math.floor(z);
  27.  
  28.   const u = fade(x),                               
  29.         v = fade(y),                                
  30.         w = fade(z);
  31.   const A = p[X  ]+Y, AA = p[A]+Z, AB = p[A+1]+Z,      
  32.       B = p[X+1]+Y, BA = p[B]+Z, BB = p[B+1]+Z;      
  33.  
  34.   return lerp(w, lerp(v, lerp(u, grad(p[AA  ], x  , y  , z   ),  
  35.                                   grad(p[BA  ], x-1, y  , z   )), 
  36.                           lerp(u, grad(p[AB  ], x  , y-1, z   ),   
  37.                                   grad(p[BB  ], x-1, y-1, z   ))), 
  38.                   lerp(v, lerp(u, grad(p[AA+1], x  , y  , z-1 ),   
  39.                                   grad(p[BA+1], x-1, y  , z-1 )),  
  40.                           lerp(u, grad(p[AB+1], x  , y-1, z-1 ),
  41.                                   grad(p[BB+1], x-1, y-1, z-1 ))));
  42. }
  43. function fade(t) { 
  44.   return t * t * t * (t * (t * 6 - 15) + 10); 
  45. }
  46. function lerp(t, a, b) { 
  47.   return a + t * (b - a); 
  48. }
  49. function grad(hash, x, y, z) {
  50.   const h = hash & 15;                      
  51.   const u = h<8 ? x : y,                 
  52.         v = h<4 ? y : h==12||h==14 ? x : z;
  53.   return ((h&1) == 0 ? u : -u) + ((h&2) == 0 ? v : -v);
  54. }
  55.  
  56. const canvas = document.body.appendChild(document.createElement('canvas'));
  57. const c = canvas.getContext('2d');
  58. canvas.width = canvas.height = 200;
  59.  
  60. c.fillStyle = 'black';
  61. c.fillRect(0, 0, canvas.width, canvas.height);
  62.  
  63. const pix = c.createImageData(canvas.width, canvas.height);
  64.  
  65. const freq = 1 / 20;
  66. let inc = 0;
  67. let z = 0;
  68.  
  69. function loop() {
  70.   z += 0.02;
  71.   inc = 0;
  72.   for (var y = 0; y < canvas.height; y++) {
  73.     for (var x = 0; x < canvas.width; x++) {
  74.       var col = parseInt(Math.abs(noise(x * freq, y * freq, z)) * 500);
  75.       pix.data[inc++] = col;
  76.       pix.data[inc++] = col;
  77.       pix.data[inc++] = col;
  78.       pix.data[inc++] = 255;
  79.     }
  80.   }
  81.  
  82.   c.putImageData(pix, 0, 0);
  83.   window.requestAnimationFrame(loop);
  84. }
  85. loop();

Perlin noise (created by Ken Perlin).

Years ago I grabbed the noise function from here I think….

This shows how to do perlin noise on an html5 canvas. If you need a more performant one for animation and/or larger images – a glsl shader is the way to go.

Super Simple Seeded Random

  1. let _seed = 1234567;
  2.  
  3. // Deterministic pseudo-random float in the interval [ 0, 1 ]
  4. function seededRandom( s ) {
  5.   if ( s !== undefined ) _seed = s % 2147483647;
  6.  
  7.   // Park-Miller algorithm
  8.   _seed = _seed * 16807 % 2147483647;
  9.   return ( _seed - 1 ) / 2147483646;
  10. }

Straight from the THREE.js source code – a fun and simple seeded random. The best libraries are always filled with gems like this…

If I were going to use this I would do a couple things out of pure preference:

  1. let seed = 1234567;
  2.  
  3. const setSeed = newSeed => seed = newSeed
  4. function seededRand() {
  5.   // Park-Miller algorithm
  6.   seed *= 16807 % 0x7fffffff;
  7.   return (seed - 1) / 0x7fffffff;
  8. }
  9.  
  10. // try it out:
  11.  
  12. console.log('one', seededRand());
  13. console.log('two', seededRand());
  14. console.log('three', seededRand());
  15.  
  16. seed = 9999
  17. console.log('one new seed', seededRand());
  18. console.log('one new seed', seededRand());
  19.  
  20. seed = 1234567;
  21. console.log('one old seed', seededRand());

If you’re wondering about what this is doing… read more about it here.

snippet.zone ~ 2021-24 /// {s/z}